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ABSTRACT

This thesis presents a new security policy enforcer designed for securing parallel computation

on CUDA GPUs. We show how the very features that make a GPGPU desirable have already been

utilized in existing exploits, fortifying the need for security protections on a GPGPU. An aspect

weaver was designed for CUDA with the goal of utilizing aspect-oriented programming for security

policy enforcement. Empirical testing verified the ability of our aspect weaver to enforce various

policies. Furthermore, a performance analysis was performed to demonstrate that using this policy

enforcer provides no significant performance impact over manual insertion of policy code. Finally,

future research goals are presented through a plan of work. We hope that this thesis will provide

for long term research goals to guide the field of GPU security.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

General Purpose Graphical Processing Unit (GPGPU) computation is a method of compu-

tation in which a Graphical Processing Unit (GPU) handles the processing that would traditionally

be done on a CPU. To properly explain software written for GPGPU, the architectural differ-

ences between traditional CPU based computing and GPU based computing needs to be explained.

This section will serve as a short introduction, where we will be comparing the different levels of

parallelism between code written for CPUs and GPUs.

A traditional single core CPU is classified as a Single Instruction Single Device (SISD)

device under Flynn’s taxonomy [11], which is a classification of computer architectures. In the

SISD classification of architectures, a CPU has a single processing stream for a single stream of

instructions running linearly on the processing core of the CPU. In order to manipulate a large

amount of data, a programmer can only use a loop or recursion. This process is done through

iterating along the entire data set, running the same instructions, repeatedly.

There is no hardware level parallelism implemented with the SISD classification of computer

architectures. A programmer is limited to running sequential code only if they wish to fully utilize

the underlying hardware of a SISD device. Thread level and instruction level parallelism can be

utilized with single core CPU’s to allow for multiple processes to run simultaneously. It is important

to note that this level of parallelism is performed through a layer of software-based scheduling and

in itself is not a hardware feature.

Modern CPUs have multiple cores running alongside each other, allowing a degree of hard-

ware level parallelism to the programmer. These processor cores share memory but are capable

of running on multiple separate streams of instructions, thus fitting the Multiple Instructions on
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Multiple Data streams (MIMD) category under Flynn’s taxonomy. In order to utilize parallelism

with this style of programming, a developer must explicitly specify what each stream of instructions

should do. Also, there are concerns with the synchronization and creation of these threads to avoid

issues with concurrency such as deadlocking and resource starvation.

In terms of hardware design, multiprocessing can be complex and difficult to scale. A CPU’s

processing core is complex in design, thus limiting to the number of cores that can be placed in the

space of a single CPU package. For example, as of the time of this writing, a high-end desktop CPU

by Intel has four physical cores that have the capability of executing as two virtual cores each [15].

These eight virtual cores allow for only eight streams of instructions to run at the same time on

hardware. Multiple CPUs can be utilized in high-end computers or multiple computers can be ran

together in grid computers.

A GPU is normally used for rendering images onto a computer’s display. Rendering such

graphics would require relatively high-speed computations of a large number of vectors very rapidly.

In order to perform this computation quickly, GPUs are designed with a large number of processing

cores that are very small and efficient.

In a GPGPU, a single instruction stream is executed on many concurrent threads; thus

GPGPUs are classified as being Single Instruction Multiple Thread (SIMT) devices. The SIMT

classification is similar to the Single Instruction Many Data stream (SIMD) classification under

Flynn’s taxonomy. Both SIMD and SIMT send the same instruction to many execution units, but

in SIMT multithreading is combined with the SIMD model [24]. Having multithreading allows for

a GPGPU to execute more tasks than in a SIMD based device.

Each individual GPU cores does run slower than a core of a traditional CPU [26]. In spite of

the lower clock speed of the GPU cores, GPUs have a larger computational capability than CPUs.

This computational capability is due to the relatively large number of cores that are available.

As of the time of this writing, the highest-end GPU currently available from Nvidia has 3072

cores that are capable of running computations [28]. Each one of these cores has the capability of

running multiple threads themselves, which allows for the capability of a significantly higher level

of parallel computing in comparison with a regular CPU. Furthermore, multiple GPUs can easily

2
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be made to run alongside each other on a single computer, which can also increase the scale of

parallelism.

1.1 GPGPU Programming

Source Code nvcc splits

Device code

Host code

nvcc combines Executable

gcc

nvc
c

Figure 1.1. Steps to compile within nvcc.

The main existing tools for programming code that targets GPGPUs are OpenCL and

CUDA. These frameworks allow for a developer to write code that will run on a CPU as well as

the code that is expected to run, asynchronously, on the GPGPU. In these language frameworks,

special code must be written and called explicitly to be ran on the GPU. The CPU instructions

are written through a common procedural languages such as C or C++.

The GPU code is written through the stream programming paradigm [5]. In stream pro-

gramming, the code that run on the device are called kernels. These kernels are functions that run

on parallel GPU threads at the same time, with a different index on each thread. This is similar to

writing a body of a loop, but instead of the processor running the body once each iteration with a

different index, the entire loop runs at once on each GPU thread.

In the CUDA framework, these kernels are indexed through a hierarchy which can be

accessed through a three-component vector. Each component identifies the threads, thread blocks,

and the grid of blocks running on the system. Each grid holds a number of blocks which in turn
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holds a number of threads. Currently, GPUs which are CUDA capable, are limited to having 1024

threads per block as defined by their hardware design specifications [27].

The compiler used for CUDA code is called nvcc. This compiler’s front-end processes the

CUDA source code by initially separating the code based on where the execution should occur.

Next, regular code that should execute on a CPU is sent to an external C compiler, such as gcc,

to process what is called the host code. The GPU code is compiled through nvcc to generate what

is called the device code. Finally, nvcc combines the entire result into a single executable program.

Figure 1.1 demonstrates the compilation process under nvcc.

When CUDA code is processed, the host code instructs the GPUs with the commands to

run. The host code sends the device code over to the GPU through the system bus, which then

copies data to be processed into the GPU memory. Next, the GPU runs the device code as a

stream of instructions. When it is done, the results are copied back over the system bus to the host

memory of the CPU.

In CUDA, code to be run on the GPU device are identified in the source code by the

delimiters device and global . A function is callable from both the CPU host and other

devices if it is delimited by global . As for the device delimiter, this function is only callable

by code which is running on GPU devices; this code is not callable by a CPU host.

OpenCL is an open-source API that allows for a developer to define kernels to run on GPUs.

Being open-source, OpenCL is capable of running on GPUs and parallel processing units other than

those made by Nvidia. While CUDA is limited only to Nvidia GPUs, it has other performance

benefits with CUDA that make it more appealing to utilize [18].

1.2 Existing Attacks

Code written for an Nvidia GPU utilizes a proprietary assembly language whose code is

difficult to analyze due to the lack of accessible documentation. Also, since administrator privileges

are not needed to run GPU code, powerful malware can be made to execute on GPUs in order

to run without detection [30]. Moreover, since the majority of consumer computers are on x86
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based architectures, most malware analysis tools have been written for such an assembly language,

hindering any attempts to prevent GPU malware.

As a malware assistant, GPUs can be used to unpack malware that will run on a CPU in

order to avoid detection by malware analysis tools [41]. It is also possible for the GPU to be used

as a polymorphic malware extractor in order to further evasion from malware analysis tools. This

concern is a challenge for a security engineer to protect against due to the lack of existing tools to

enforce security policies on a GPU.

In the wild, GPUs have already been utilized for nefarious purposes. ESEA, a competitive

video game service, was found guilty of hiding a bitcoin miner on their client software [32]. This

miner utilized clients’ computers to mine bitcoin without the clients knowledge on their GPUs while

the client was waiting to start a game. The bitcoin miner introduced costly hardware damage to

users since the GPUs’ were made to run at higher loads than the clients would normally run their

GPUs, thus overheating the devices. Other malware can utilize this idea of GPU based bitcoin

mining to spread a botnet that would mine cryptocurrency for the malware writer at the price of

the infected users hardware and energy consumption.

Other potential attacks can also utilize a GPU. Since GPUs have a higher processing capa-

bility than a CPU, malware can use this high processing capability. An example of a utility of a

GPU for malware would be password cracking a user’s encrypted files without being detected as a

CPU process.

Memory on the GPU can be read allowing for an attacker to obtain information on a user’s

screen directly. Furthermore, this same memory can also be written to. As such it is possible to

render artifacts on a user’s screen to modify displayed content at will.

It was recently discovered that there was a bug in the Nvidia drivers where memory is

not freed after use [2]. A user discovered that information which was rendered in his private

incognito browsing instance was still available after closing his browser in the GPU memory. This

user successfully wrote a program to obtain information that was rendered previously in the video

buffer to verify the existence of this bug. Since the GPU did not clear memory correctly, it was
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possible for an attacker to obtain sensitive information from a user’s browsing history through

simply reading this memories contents.

Our review of the existing works presented in this section show that there is a need for

some mechanism to prevent the attacks mentioned above. Without knowledge of the assembly

language, a static analysis tool of compiled code would be a significant challenge to write. As such,

we propose that a language should be created to enforce security policies on CUDA source code.

1.3 Aspect-oriented Programming

This section provides a brief introduction to aspect-oriented programming. Aspect-oriented

programming is a programming paradigm that will be utilized throughout this thesis. Cross-cutting

concerns are the parts of a program that rely on, or are relied on, with many other components of

the program. In aspect-oriented programming, code is modularized by the cross-cutting concerns.

This paradigm will be utilized to simplify the insertion of security policy code into the target CUDA

source code.

In aspect-oriented programming, advice code is inserted into specific points called join-

points. The advice code is inserted onto the join-points through an aspect weaver. By having the

advice code be defined separately, it is easier for a developer to write easily maintainable code.

Ease of maintenance is a feature of aspect oriented programming. Since the developers can now

write software without concerning themselves with the contents of the advice code while focusing

on their designs. The terms and history of aspect-oriented programming are further discussed in

Section 2.3.

1.4 Contributions

Through the use of aspect-oriented programming techniques we will show in this thesis that

the definition and enforcement of, policies for Nvidia’s CUDA platform is possible to be done. The

main contributions of this thesis are:

1. The definition of simple aspect-oriented extensions to CUDA.
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2. Implementation of an aspect weaver for CUDA.

3. Using the aspect-oriented extensions to weave in code segments defined policies.

4. Demonstrating that these policies are successfully enforced.

1.5 Outline of Writing

Chapter 2 presents the reader with existing related work on security policies. We present

a system to enforce security policies on GPUs in Chapter 3. Examples of using the system created

in this thesis are provided in Chapter 4 along with a performance analysis of the effects introduced

by utilizing this system. In Chapter 5, we provide goals for future versions of the system which we

presented. Lastly, in Chapter 6, we present future work and summarize the thesis.

7
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CHAPTER 2

RELATED WORK

An overview of the existing works relating to security policy specification will be presented

in this chapter. Firstly, the scope of theoretical work involved with security policy studies will be

introduced. A survey of existing languages and tools for policy specification will be presented where

we shall show that there does not exist a tool suitable for the needs of GPGPU security. Lastly, we

will present in detail a useful programming paradigm that we have utilized for the system developed

in this thesis.

2.1 Security Policy Theory

Security policies are executions that are determined to be unacceptable by some pre-defined

rules. Enforceability theory is the study of what can and cannot be enforced as a policy through

policy enforcement mechanisms. These policies might relate to general purpose concepts such as

access control, information flow, and availability. System specific and special purpose policies are

very important utilities that would be used by a security engineer in order to define how a system

should behave.

An example of an application specific security policy is the traditional Unix file system

permission. These file system permissions enforce access control by checking the file system flags

and determining whether or not a user has the authority to read, write, or execute a file [31]. The

operating system that is enforcing this policy prevents any requests to files by users without the

correct permissions, thus preventing any unauthorized file accesses.

There are two classes of properties, these policies are known as safety and liveness proper-

ties [21]. Policies that specify that “nothing bad happens” are defined as safety properties. On the
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other hand, a liveness property is a policy which states that something “must” happen in order to

satisfy the policy’s requirements.

Schneider formalized program monitors and discovered limitations on them. Furthermore,

he presented a class of enforcement mechanisms that he defined as Execution Monitors [33]. This

class of monitors can only enforce safety properties. This class of enforcement mechanisms works

by monitoring the execution steps of a system which he defined to be the target. When the policy

was violated, the Execution Monitor would terminate this target system. In his work, he also

defined the class of security policies that are enforceable by Execution Monitors. Specifically, it

was established that mechanisms which use information that would be unavailable from monitoring

an executions trace are to be excluded from Execution Monitors.

From the definition provided by Schneider, Execution Monitors would not be capable of

enforcing a policy that requires knowledge of an execution’s future steps. As such, Schneider

excludes compilers, type checkers, and other forms of code static analysis from the Execution

Monitor family of enforcement mechanisms. This is because having knowledge of alternate paths

of code and future execution is the feature that invalidates the definition of these tools from being

Execution Monitor mechanisms.

For non-safety policies, Ligatti built on Scheider’s definition of policies [23]. Ligatti defined

the theoretical monitors as being modeled as edit automata. An edit automata is a transformer

of code which has the capability to insert, or suppress, actions on behalf of a target. Having this

capability allows for a remedial action to be specified for an execution instead of simply rendering

a trace as invalid. These remedial actions allow for liveness policies to also be enforced.

2.2 Policy Specification Languages

A number of policy definition tools already exist to specify and enforce security policies.

At the time of this writing, there was no security policy specification language in existence that

we have found that can be used for GPGPU computing. This section will introduce the scope of

research of policy specification languages and summarize selected languages.

9
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Polymer is a specification language and system for composable security policies in Java.

Polymer’s implementation deals with complex security policies by allowing a security engineer to

specify a security policy as the composition of smaller sub-policy modules for enforcing policies.

Polymer has three core abstractions: actions, suggestions, and policies [4]. The action objects

include all the information that is relevant to security sensitive method invocations. Suggestions

are used to suggest ways for the monitor to handle actions which trigger a policy constraint. The

policies are the monitors themselves that query actions, can accept suggestions, and then return a

result based on the suggestion.

Ponder2 is an object management system that allows for inter-object message passing in

a distributed system [40]. Based on an existing language, Ponder, the system Ponder2 aims to

incorporate events and policies to object management [9]. Policies in Ponder2 are defined to

the basic types being either obligation policies or authorization policies. Obligation policies are

actions that must be performed by the systems managers when an event occurs based on a set

of conditions. Authorization policies are simply rules to allow, or deny, message passing between

objects. An authorization policy is essentially an access control policy. In Ponder2, the policy can

either be designed to allow or deny.

Members of a system in Ponder2 are organized into domains. These domains simply act as

containers for objects in a hierarchy. Policies in Ponder2 are specified in terms of domains instead

of directly on the objects within a domain. When a policy is specified onto a domain, the same

policy is inherited to the sub-domains. However, when a domain has multiple parents, the domain

takes the most explicit policy and does not combine these policies.

The eXtensible Access Control Markup Language, XACML, is used for specifying access

control policies [14]. In XACML, a policy is defined with three components: a Target, a Rule set,

and a Rule combining algorithm. A XACML Target is defined as a set of requests to which the

policy applies. The Target can be inherited from the Parent policy if a XACML rule is formed

through combination. The Targets in XACML are defined statically. The rules in the rule set each

have another (optional) Target, Conditions, and Effects. The Condition defines what restrictions

are needed for the Effect to occur. XACML is limited as a policy language to simply permit or deny

10
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in access control as effects. It is also possible for a policy in XACML to include Obligations which

are functions to be executed that may affect the decision. Finally, the Rule combining algorithm

defines how to resolve conflicts when a policy is combined with another policy.

Run-time enforcement in a distributed system has used to enforce security policies. Other re-

search involved in the area of distributed security policies can be found in [39, 20, 38, 35, 34, 17, 10].

These works have defined how to communicate enforce security policies in a distributed environ-

ment. However, none of these works have defined policies, or policy enforcement mechanisms, for

GPGPUs.

2.3 Aspect-Oriented Programming

In order to allow for a developer to write the CUDA based code without having to concern

themselves with the security, we have decided to take an aspect-oriented programming approach.

This section will serve as an introduction to terms and concepts needed to explain aspect-oriented

programming, provide the background work for aspect-oriented programming, as well as attempts

to apply aspect-oriented programming to GPGPUs.

Aspect-oriented programming is a programming paradigm where a program is modularized

by its cross-cutting concerns. The concept of aspect-oriented programming was explicitly defined by

Kiczales in [19]. An example of aspect-oriented programming is an extension to the Java language

known as AspectJ [13]. In order to discuss aspect-oriented programming, related concepts will be

defined in his section.

When two properties that are being programmed have to be built differently, yet coordinated

in some way, there can be some difficulties with the interfacing of these properties. We say that

two properties cross-cut each other when they have to be coordinated in such ways.

If a property of a program can be fully expressed in a general procedure, it is defined as

a component. Components can be easily composed as needed and are easily accessible. These

components are considered to be individual units of a systems’ functionality.

In general purpose language paradigms, such as procedural or object oriented, a programmer

cannot build systems which cross-cut each other independently. This leads to difficulty for a

11
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programmer to compose two properties together without having the code tangled in difficulty to

decompose ways. The difficulty is because if the specifications change in any of the properties

that are the results of a composition, the programmer has manually decompose the components,

implement the modifications needed, finally recomposing the code.

Advice is any additional behavior that should be applied to the existing program. Advice

can be any behavior such as, but not limited to, additional code, performance or access patterns,

or even logging functions. In this paper, all of the policies to be implemented are considered to be

advice since they are going to be behavior added to an existing CUDA program.

A join-point is a point in a programs execution path where the code, advice, from an

aspect should be performed. The set of join-points is known as the point-cuts in aspect-oriented

programming.

The combination of join-points and advice are aspects. In order to place aspects in their

correct locations in code, an aspect weaver is used. An aspect weaver takes the set of aspect and

component programs outputs another program as output. This program would have all the advice

at the correct join-points in the flow graph.

In terms of the CUDA language framework, there has not been any existing implementa-

tions, as far as we are aware, where aspect-oriented programming was actually applied to CUDA.

The utility of aspect-oriented programming has been proposed as a desirable future feature for

CUDA to allow for performance benefits [29]. Also, aspect-oriented GPU programming has been

considered for simplifying programming through languages that output CUDA from object-oriented

languages such as in [12, 42, 25]. However, these existing works do not actually implement aspect-

oriented programming to existing CUDA code, but instead they take existing languages, which are

not CUDA, and use aspect-oriented programming techniques to output code that can be compiled

under a CUDA compiler.

There already exists an aspect-oriented programming implementation for the OpenCL

framework [8]. However, as far as my research has found, there is no available implementation

for CUDA code. Even though the OpenCL version can run on more hardware, we have chosen to

12
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continue the route of using CUDA due to the added performance of running CUDA code and due

to my familiarity with CUDA compared to OpenCL.

2.4 Chapter Summary

The related research has been described in this chapter in order to allow the reader to

familiarize themselves with the relevant terms and understand the current state of works of security

policy enforcement. Enforceability theory as a field has been deeply studied in the literature.

Many tools and languages exist for specifying security policies. From the set of policy

specification languages, none of the existing ones found have considered GPGPUs as a target

platform on which to enforce security policies.

Also, aspect-oriented programming as a paradigm was introduced with the terms defined

thoroughly. It was shown that aspect-oriented programming currently does not exist for CUDA.

Furthermore, it was demonstrated that there exists a desire for aspect-oriented programming for

CUDA for purposes outside of the needs of security policy specification.

13
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CHAPTER 3

PROPOSED SYSTEM

This chapter we will provide a detailed description of the main contributions proposed in

this thesis. The CUDA aspect weaver that we introduce will be introduced in this chapter. A list

of possible policy types for this system is defined. Also, the process of writing policies for this

CUDA aspect weaver will be explained. Finally, the development process of using this weaver with

existing CUDA code will be discussed.

3.1 The eGASP Policy Enforcement System

In order to enforce defined policies on a target CUDA program, it was decided to weave in

the policy code onto the source code of the target program and output a CUDA program which

has been enforced. This approach allows a CUDA developer to work independently of a policy

engineer as the policy code is kept separated from the target CUDA code. As was discussed

in Section 2.2, weaving code is a standard practice used for policy enforcement, e.g. the policy

enforcement mechanism in Polymer [4].

The name eGASP was chosen for this policy enforcer. This name is an acronym which stands

for “enforcing GPU policies through Aspect Style Programming”. The eGASP program will take

a gasp file and weave in the policies into the target code at specified join-points, locations in the

target code to insert aspect code, to enforce the specified policies.

This policy enforcer program was written using Python. Python was chosen to utilize

existing string manipulation libraries to inline the policies into a target CUDA device function. We

provide the full source code of eGASP online for use [1].

14
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Table 3.1: GASP policy types.

Policy type Join-point location.

Pre-execution Into the function at the beginning.
Pre-return Prior to all instances of return.
Post-execution At the very end of the function.

@begin signature

@preExec

Pre-execution code

@preReturn

Pre-return code

@postExec

Post-execution code

@end

Figure 3.1. File format specification for a gasp policy.

There are three types of policy join-points supported in eGASP. For eGASP the three policies

are pre-execution, pre-return, and post-execution. The target code is the file onto which the policy

needs to be enforced, and join-points are where the policy code needs to be inserted. These policy

types define the join-points in which code will be inserted verbatim. A description for the types of

policies is found in Table 3.1 where the join-points are defined for each policy type.

A policy engineer can write a policy for eGASP in a file with the file type extension gasp. In

a gasp file, the engineer has to define which function to enforce by providing a function signature,

and the aspect code to be inserted at the join-points specified. The format of a gasp is defined in

Figure 3.1. In this format, all of the sections need to be included for every policy type in a gasp

file.

If a policy engineer does not need to enforce any policy for a specific policy type, they may

leave that policy section blank. The policy engineer still needs to define all sections of a gasp file.

Furthermore, a policy engineer can define policies for multiple target functions in the same gasp

file by writing a full gasp specification for every policy with each section defining all parts of a

policy.

The signature of a target function has to be, verbatim, what is written in the target CUDA

code to declare the function. This includes the global or device identifiers which are

required to define a function as mentioned in Section 1.1. The eGASP program would search for
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the function that matches this signature and then proceed to insert the code at the join-points

specified.

// This placeholder is empty

// __global__ void sensitiveFunction(int *input)

// {

// }

__global__ void sensitiveFunction(int *input)

{

// This function’s body should not execute.

maliciousFunction(input);

}

Figure 3.2. Function in a comment.

A distinction has been intentionally made between pre-return and post-execution code to

fit a specific edge case of defining security policies for functions with a void return type. Any void

function can use a return statement to break out of execution early. Having such a distinction

allows a policy writer to specify different policy behaviors based on whether a target function

returns explicitly or exits from the end of execution.

Prior to any code insertion, eGASP strips away all of the comments in the target code.

Comment stripping is a standard behavior for the GNU C compiler in the preprocessing phase as

defined in the documentation [36], thus removing the comments would not affect the functionality of

the code. The reason for stripping away comments from the target program in eGASP is to prevent

a possible malicious programmer from avoiding the policy enforcement altogether. If comments are

not stripped, this form of policy enforcement circumvention would have been possible by placing

a fake function with the same signature in a comment located prior to where the actual target

function body is written in the CUDA program.

An example of a scenario where a malicious developer might attempt to avoid a policy being

enforced by eGASP through hiding in a comment is presented with the code block in Figure 3.2.

In this example, a malicious code writer knows that the security engineer has a policy to exit out

of a function prior to executing its body. The malicious user could have attempted to put an

empty placeholder function with the same signature as sensitiveFunction within comments. In
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this function body, another malicious function could be called by the programmer, resulting in

violation of the security policy.

If comments weren’t stripped away from the code, eGASP could only modify the first oc-

currence of sensitiveFunction. This would allow the malicious code writer to execute their

malicious functionality even after a policy engineer would have attempted to have this code be

enforced. Since eGASP removes all comments, the code that is commented will be removed from

the source. Stripping the comments renders such a malicious avoidance irrelevant as eGASP would

enforce the correct code and not be affected by the commented code.

3.2 Utilizing eGASP in a Development Environment

Source Code

Policy Code

eGASP Secured Code nvcc

Figure 3.3. Development workflow with eGASP.

For a CUDA developer to use eGASP in their workflow, the developer would require access to

both the source code file of the target program, and the gasp file with the policies. The process of

using eGASP in a development workflow is illustrated in Figure 3.3. The source code and gasp files

would be inputs to eGASP. Running eGASP would output a CUDA source program. This resulting

program can be compiled through nvcc instead of the original target program to obtain executable

code which has been fully enforced by the specifications defined in the gasp file.

A systems engineer in an organization can automate this process by replacing nvcc with an

alias to a script that performs all the steps in Figure 3.3 with a system-wide policy that is given by

the policy engineer. By creating such a script, using eGASP would be transparent to the developers

in the environment, and we believe this would not interfere with the process of CUDA development.
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3.3 Chapter Summary

This chapter introduced the GPU policy enforcement system eGASP with descriptions of

how to write policies and use eGASP. The possible policy join-points which can be enforced are

defined for the aspect weaver as being pre-execution, pre-return, and post-execution with reasoning

for distinguishing pre-return and post-execution being given. A file format specification for writing

policy code in a gasp file for eGASP is defined for policy engineers. There was a possible method to

avoid eGASP which was discovered during development, but the solution to that vulnerability was

described with the mitigation implemented. Lastly, the compilation steps of eGASP are described

showing what a developer would have to do to use this system.
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CHAPTER 4

EMPIRICAL EVALUATION

Examples of eGASP policies and the results of testing these policies are presented in this

chapter. First, the hardware configuration that we used to perform these tests will be presented;

this configuration can be used to reproduce tests. Then, some policies to emulate what a security

engineer might wish to enforce in various situations are evaluated. Finally, a performance analysis

of using eGASP to enforce policies compared to a manual method of code insertion will be measured.

4.1 System Configuration

Table 4.1: System configuration.

Component Specification

Operating System Arch Linux
Kernel Version 4.4.5-1-ARCH
Desktop Environment Gnome 3.18
Driver Version 361.28
CUDA release 7.5, V7.5.17
CPU Intel 2600K overclocked to 3.5 GHz base, 4.43 GHz max
GPU Nvidia GTX-580
RAM 16-GiB DDR3

All of the tests in this chapter were run on a personal desktop with the specifications detailed

on Table 4.1. A reader can reproduce the results of all of the tests presented in this chapter given

the specifications provided. This desktop was chosen due to availability of hardware at the time of

writing this thesis.
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4.2 Examples of Policies

Several policies have been written using eGASP. These policies will be listed in this section

with the utility explained. The last policy will be used to demonstrate the performance difference

between manually inserting the policy code compared to using eGASP. As was mentioned in Sec-

tion 3.1, the policy engineer needs to include all sections in a gasp file, thus all of the figures in

this chapter will include an entire gasp policy.

4.2.1 Logging

@begin __global__ void Sensitive_Global

@preExec

long long int startTime = clock64();

@preReturn

@postExec

timeLog[blockIdx.x] = clock64() - startTime;

@end

Figure 4.1. Policy to log execution time.

Logging in a common policy desired for security and policy engineers. To emulate the

functionality of logging, we wrote a policy to time the execution of the body of a function. This

policy will save the calculated execution time in an array that was passed in as a parameter. When

the policy returns, the calling code can then check the contents of the array timeLog for the results.

This gasp policy is shown in Figure 4.1.

To facilitate logging, the program had to be manually modified to pass in an array timeLog

to the function called Sensitive Global. This requires manual intervention of the developer to

allow for the policy to be enforced onto a target. A proposed method for enabling this modification

without manual intervention of the developer is explained in Section 5.3.
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@begin __global__ void Sensitive_Global

@preExec

if (blockIdx.x > 300)

{

@preReturn

@postExec

}

@end

Figure 4.2. Policy to limit blocks which execute.

4.2.2 Imposing Execution Limitations

It was decided to demonstrate how to define and enforce a safety policy through the use

of eGASP. Safety policies are policies which specify that nothing bad happens. In this policy, we

prevent the execution of a CUDA function from continuing after it violates our rules. Such a policy

would be considered to be a safety policy according to this definition. The theory behind safety

policies was described in Section 2.1.

The purpose of the proposed policy was to limit the number of CUDA blocks on which the

device code would execute. This policy can be used as a form of load limiting of code where each

block can run fully independently of each other. The method of doing this execution limiting is

performed by wrapping the body of the target function with a check of the index of the blocks. If

the check fails, then the body of the function would not execute. The execution limiting policy is

shown in Figure 4.2.

It must be noted that in order to wrap the body of the target function, a brace must be

opened in the @preExec point-cut location, and closed in the @postExec. The braces have to

be placed in such sections since eGASP inserts the advice code from the policy verbatim into the

locations specified. These braces wrap the existing body expression of the target function as the

body of an if conditional statement, as such the body would be jumped over if the condition could

not evaluate correctly.
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@begin __global__ void Sensitive_Global

@preExec

int thisID = blockIdx.x + blockIdx.y;

@preReturn

@postExec

@end

Figure 4.3. Policy to complete missing code.

4.2.3 Completing Missing Code

We designed the policy in Figure 4.3 to demonstrate that eGASP can be used outside the

realm of security policies. For educational purposes, a class teaching CUDA to beginner pro-

gramming students might wish to abstract away concepts early on from the students to ease their

learning. An example would be to only show the relative functional body of code to these students

while eliminating the concern of calculating the indexes of each thread for a later lesson.

To build a policy that that represents this classroom situation, we moved the process of

calculating the index of a CUDA block into a policy in a gasp file. Having the calculation in a

separate file allows us to abstract that portion away from the body of the CUDA code as shown in

the gasp file defined in Figure 4.3. This will allow the students to write code for CUDA that will

compile without having to worry about calculating the thread indices. The calculated index in this

policy is stored as an integer to be referenced by students as the variable thisID throughout their

code.

The gasp policy defined in Figure 4.3 can also be used for CUDA developers in a large

organization. An algorithm designer in this organization might wish to write an algorithm for

CUDA without worrying about the geometry of the kernel being called. By having the index

calculation in a separate gasp file, this designer can define the indices after fully designing their

algorithm without modifying any of their CUDA code. Furthermore the algorithm designer can

change the geometry of their algorithm when the organization purchases different hardware without

having to go into the source CUDA code.
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4.3 Performance Analysis

@begin __global__ void simple_function

@preExec

// local array to represent generated primes

int localArray[10001];

// Initialize entire array as "true"

for(int i = 0; i < 10001; i++)

localArray[i] = 1;

// Starting at 2 untill sqrt(arraysize)

for (int i = 2; i <= 100; i++)

if (localArray[i] == 1)

for (int j = i*i; j < 10001; j+= i)

// These numbers are not prime

localArray[j] = 0;

@preReturn

@postExec

@end

Figure 4.4. Performance testing code.

In this section, we will present the results of some performance tests that were performed.

To artificially introduce measurably long execution time, each CUDA block calculates the first

prime numbers which are less than 10,000 by using the Sieve of Eratosthenes. Moreover, manual

tests were performed to compare inlining the aspects of a policy against inserting function calls to

inserted functions containing policy code. The results of the performance tests described in this

section are summarized in Table 4.2.

Figure 4.4 provides the definition of the policy which was used to insert a block of code

into a test CUDA function called simple function. This policy was specifically designed to have

a slow execution time when run in order to allow us to measure if there is a significant perfor-

mance difference between using eGASP compared to manually inserting the code. To facilitate

logging, we utilized the cudaEventElapsedTime function that provides us with a resolution of 0.5

microseconds [27].
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Table 4.2: Measurement results.

Process Execution Time

Inlining a function 483.018 ms
Calling Function 485.305 ms

Calculating Sieve of Eratosthenes 480.408 ms
simple function 41.938 ms
Enforced Target 482.746 ms

At its current state of design, the eGASP weaver inlines the policy code onto the target

program. This choice to inline code was made to avoid any potential overhead of function calls

being detrimental to a target CUDA functions execution time. We have expected that the execution

time of inlining the aspect code onto a target program would not be significantly higher than that

of a target program calling the aspects in separate functions.

When we tested the runtime of inlining the policy code in Figure 4.4 to a target program

against having the policy code be placed in a separate function that gets called, the average time

to call a body of a function was 485.305 ms after 100 iterations. As for inlining, it took an average

of 483.018 ms to execute 100 iterations which is approximately 2 ms faster than using function

calls. However, with these results, we consider the difference of execution time between inlining

the policy code onto a target against calling a device function from the CUDA target code to be

insignificant, as it is less than half a percent difference in execution time.

It was expected that there would be some level of overhead to call a CUDA device function

from the CPU host. This overhead is due to how, in the CUDA framework, the CPU host needs

to transfer instructions to the GPU over a relatively slow PCI bus [27]. As such, we expected that

it would be faster to execute run code in a policy instead of having to return to a CPU to perform

operations between calls to the GPU.

In our tests of this claim we also have timed how long it would take for 100 iterations

of simple function to be called from host code and complete executing. We have found that

average execution time of simple function was 41.938 ms. The runtime of a function that only

has the contents of the policy in Figure 4.4 was found to be 480.408 ms. When we applied the

policy of generating primes upon simple function, we have found that the enforced target was less
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than the sum of execution times of a function to perform the generations and the time to execute

simple function, therefore verifying our claims.

4.4 Chapter Summary

This section provided examples of policies for a developer who intends to use eGASP. We

demonstrated policies that can be used to enforce logging, a safety policy that limits execution

based on a defined rule, and a policy that can be utilized for simplifying the process of writing

CUDA code.

We also tested the performance overhead of the code that has been enforced through the use

of eGASP. Comparing target code that has been enforced eGASP to manually inserting the policy code

and found no significant performance penalty when using eGASP. Finally, we have demonstrated

that the design choice of inlining the policy code of a gasp file onto a CUDA program, would not

have a significant detrimental effect on the performance of the target program compared to using

function calls for the policies.
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CHAPTER 5

IMPROVING THE POLICY ENFORCER

At its current state of design, the eGASP weaver is a proof-of-concept tool. Developing

our policy enforcer for CUDA has introduced difficulties since there does not appear to be an

open-source compiler available at the time of this writing [6]. To make eGASP complete either a

full-fledged CUDA compiler needs to be written, or the functionality of eGASP needs to be inserted

into an existing compiler. This chapter lists some features that can be considered to be desirable

for a policy engineer to utilize. Each of the following sub sections details a proposed feature for

eGASP and the techniques which can be used to apply such features.

5.1 Join-points Prior to Calling CUDA Functions

A potential policy type that a security engineer may wish to include when designing their

policies might require processing data prior to calling functions. This could involve running a

predetermined sequence of code prior to all of the CUDA function calls that the engineer specifies

to be targets. It is possible to find all possible entry points to a CUDA device function in a CUDA

program through an exhaustive parsing of the target programs source code.

If all the correct function calls are successfully located by traversing the tree resulting from

the parser, it may be possible to place advice code prior to a target functions calls as join-points.

The intended aspects in the policy code can be weaved in later into the target code through a

trivial inline insertion of the aspect code at the entry points located from the parser.

One proposed situation where this form of policy is more desirable than the pre-execution

policy described in Section 3.1 is in a high performance and time sensitive computer system envi-

ronment. There is a level of delay every time that a CUDA kernel is invoked from a CPU device [7].
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By having a conditional prior to entering the body of a CUDA function instead of within the body

of the CUDA function, we can avoid this delay. It may even be argued that a developer can utilize

a policy as a performance optimization can be designed through utilizing this technique.

5.2 Join-points After Returning from CUDA Functions

As in Section 5.1, the locations of the entry points to a CUDA function can be found through

parsing of the source code. Given the entry points, we can use the same process of parsing the

source code of a program to locate points from a CUDA program where target functions return.

Having join-points after returning differ from the feature in Section 5.1. The contrast would

be that, in this style of a policy, the aspect code insertion should be executed after the function

call is complete, to ensure that the advice will run after returning from the calling function. This

type of policy is not the same form as the pre-return code defined in eGASP in Section 3.1 as the

post-return style of policies target execution location exist outside of the functions body.

Post-return code can be useful for logging and post processing of data after a GPU has given

results. An example of a desirable functionality from a policy where logging can be performed is

using information given after running a CUDA kernel and use the CPU to process this data to

save to a file. This logging to a file policy cannot be written at the current state of eGASP as

eGASP only manipulates CUDA device code. This is because device code does not have access to

file operations [27].

5.3 Modifying the Arguments of a CUDA Function Signature

In the logging policy, described in Section 4.2.1, manual preprocessing was needed before

enforcing. If a policy can pass in more information to a CUDA function, a policy engineer can easily

implement logging code without manual intervention. To enforce that policy, manual intervention

was required by the developer to add a parameter to the function in various points. By empowering

the system engineer to add more arguments to a CUDA function, the system engineer can build

more diverse policy rules since the policy engineer can add an argument just for the policy for the

means of information passing.
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Conditional code execution is an example of a form of a policy where information passing

through arguments can be made possible. With this information being passed, a policy engineer

can have the policies determine behaviors based on previous states, where the state information is

saved onto the variables. These same variables can be passed to other policies to define a behavior

based on previous states.

As an example where information passing can be used in a policy, a boolean flag variable

can be passed to ensure that a code segment only executes once. This flag would be set upon the

first execution of a function to be signify that a segment has already executed. A policy within the

body of the function can now check the state of that flag to determine whether or not the function

should execute a section.

A parser can be used to find all the locations where the target function is called. Having

obtained the function call locations, we can manipulate the arguments for this function along with

the parameters in the function declaration and prototypes throughout the code. However, care must

be taken with this technique to avoid causing a conflict with other overloaded function definitions.

There exists a limitation with locating function pointers statically. Static analysis of pointers

to identify their runtime values is an undecidable problem [22]. Manual identification would be

required by the user to identify where function pointers would point to at runtime for eGASP to

enforce code with function pointers.

It might be possible that a developer has defined multiple functions with the same name

that are overloaded by the argument count of the function. If the added arguments to the target

function end up causing two functions to have the same function signature there would be a conflict

between the two functions, thus the resulting program would not compile.

One possible solution for this issue is to add empty arguments to the end of the definition of

the target function to ensure that there would not be a resulting conflict. These arguments would

exist as placeholders that have no effect on the execution of the program. If adding arguments has

created a function definition that matches an existing function, we can add more empty variables

until we ensure that the resulting function does not match any pre-defined functions.
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5.4 Handling Classes and Types

Currently, eGASP performs a blind search and replace for functions based on their signature.

It is possible that two separate classes can have functions with the exact same signature, but are

distinct themselves. Another concern arises when classes inherit from each other and they overload

the function definitions. A policy engineer would not have any way to differentiate between these

distinct functions.

It could be beneficial for a policy engineer to specify a policy where a function would have

different policy behaviors based on the function’s run-time type. For example, the policy engineer

could know that a program dictates different behaviors of a function depending on which type it is.

The policy engineer could then be more explicit in defining rules for the target program for each

type. Preserving type safety in the behavior of the program is one reason that a policy engineer

might wish to have a different set of rules per run-time type of a function.

We can utilize a join-point model inspired by AspectJ to implement the capability to handle

classes and types of a policy for eGASP. AspectJ is an aspect-oriented programming extension for

Java that has a join-point model where the run-time types of objects are checked to determine the

join-points [13]. A type checker would be needed to perform these forms of policies in eGASP to

check for the type of a CUDA function. Furthermore, dynamic type checking would also be needed

for programs that utilize polymorphic functions as the type of a function might change.

5.5 Composing Policies

The composition of a security policy through polcy combinators, combining algorithms,

enables a security engineer to design very complex policies through the combination of multiple,

simpler to write, sub-policies. Polymer is an example of an existing policy enforcement mechanism

that allows for security engineer to design the complex policies in such a way. The Polymer

policy enforcement and XACML are frameworks that allow for policy code reuse through policy

combinators [4].
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Policies in eGASP need to be defined on a per-function basis. A security engineer might wish

to enforce a policy on multiple target functions running the same behavior, or the capability to

have multiple, already defined, behaviors be used to create a new and more complex policy. The

process of enforcing multiple targets with the same behavior with eGASP currently would require

for the engineer to manually create a policy with the exact same content for every function.

Conversely, if an engineer wishes to create a new policy that is based on a composition from

an existing set of policies, the policy engineer needs to manually define the composed behavior as a

brand new policy. Neither of these processes allow for the ease of defining complex policies as there

is copious amount of manual code writing overhead to define the policies in either task. Having

these difficulties of writing large policies would make an engineer’s task of defining policies for a

large system be an acutely tedious engagement to deal with.

We believe that if eGASP was enhanced to allow for the capability of policy composition,

a policy engineer’s duty would be simplified. Composition would lend a policy engineer utilizing

eGASP the ability to pre-define small sub-policies that would encourage program modularity similar

to libraries in common languages. Furthermore, a team of policy engineers could distribute the

workload of policy definition to having a dedicated engineer for every sub-policy which will be

composed later, increasing the efficiency of policy definition.

5.6 Future Plan for Implementing Additional Features

The features which were listed in this chapter would benefit a security engineer but would

be difficult to implement without having access to a compiler’s internals. This section will serve as

a proposal for the methodology that may be used to implement the features which were mentioned

in the previous sections.

Many added features for eGASP have been shown to be desirable. Access to a CUDA

compiler’s internals would ease the development of eGASP to incorporate the features proposed in

this chapter. Being able to leverage the capabilities of the existing parser from a compiler would be

beneficial to implement the features in Sections 5.1, 5.2, and 5.3. Having access to the parse tree

would ease the process of locating entry and return points of a CUDA function, as well as allow
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eGASP to insert aspects as policy code onto these join-points of the program. Furthermore, having

such access would allow for eGASP to identify overloaded functions, thus avoiding the potential

issues which were mentioned in Section 5.3.

Access to the type checker can be utilized in for the concerns described in Section 5.4 to

identify the exact type of a function. A compiler performs static type checking to ensure that the

program would not have violations in the type system. By leveraging this type checker, we can

equip eGASP with knowledge of a target CUDA functions type to ensure that that the policies to

be enforced are in fact the types that we expect them to be. Also, we can utilize the compiler to

insert run-time checks for a functions type to allow for a policy to enforce a polymorphic function

with a behavior that is dependent on the function’s run-type.

Rules for composition need to be formally defined for eGASP. These rules need to take

into consideration the parallel nature of software running on the CUDA framework to ensure that

undefined behavior is not an accidental by-product of a policy. Finally, the composition rules need

to be clear and concise as to ensure that the resulting policy of a composition is what would be

expected by the policy engineer after writing a complex security policy.

5.7 Chapter Summary

Several desirable features were discussed in this chapter that we were unable to implement

in eGASP. These features include: join-points prior to calling a function, join-points after returning

from a function, the capability to modify a CUDA functions signature, handling polymorphic

functions in CUDA, and the ability to write policies through the processes of composing smaller

sub-policies. Enforcing code with function pointers would require that a user manually identify

what the runtime values would be.

A plan for eGASP to be extended with all of the features mentioned in this chapter was

given. In that plan, it was argued that the implementation of the desirable features can leverage

the inner workings of a CUDA compiler. To utilize the inner workings, it is also vital that the

source code of the compiler be freely available for the ease of implementing the proposed features

for eGASP.
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CHAPTER 6

FUTURE WORK AND SUMMARY

In this chapter we will present what we believe are the next steps to progress with research

on GPGPU security policies. Opportunities for research on CUDA policy design are listed as future

work. We will be presenting a competing platform to CUDA and explain why we believe we can

apply eGASP to that platform. Lastly, we will provide a summary of the writing presented thesis.

6.1 Future Work

We have demonstrated a few policies utilizing eGASP to enforce CUDA programs in Chap-

ter 4. More policies need to be created and tested for CUDA using eGASP. Further testing to identify

what styles of policies a security engineer would be beneficial to identify the realm of policies which

can be applied to a GPGPU.

There were some more policy types that we wished to implement in eGASP aside from the

ones listed in Section 3.1. We have listed out the desired policy types in Chapter 5. It was also

argued that it would be possible to implement the features if we had an open source compiler in a

detailed plan that we have laid out in Section 5.6.

Implementing the open-source compiler would also provide another security improvement.

As the last step of building a program with eGASP involves utilizing the nvcc compiler, ultimately

we are left to trust nvcc to handle the output code. Without a means to verify the compiler, we

are not capable to fully trust the output [37]. Having the source of the compiler would allow us to

verify, within a reasonable certainty, that the compiler in itself is not malicious.

During the design of eGASP, we have considered making eGASP work as a parallel enabled

Execution Monitor running alongside of other processes. As was described in Section 2.1, Execution
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Monitors are a class of enforcement mechanisms that monitor the execution steps of a target and

terminate the target upon policy violation. We wished for this Execution Monitor to monitor

multiple tasks at the same time. Unfortunately, as we describe in the following paragraph, we

cannot have an Execution Monitor.

In CUDA, threads on a grid run concurrently to each other. These threads cannot exe-

cute code where the execution path could diverge [27]. As such, we have argued that if a single

thread violates a policy while the remaining threads do not, we cannot target only singular thread

for a remedial action. Also, due to high degree of parallelism of GPGPUs, it would be difficult

to synchronize execution an Execution Monitor without incurring massive amount is introduced

slowdown.

We have looked at other parallel computation modules for this concept. Intel provides its

own family of highly parallel computation platform as a competitor to CUDA and OpenCL. The

Intel Xeon Phi family of coprocessors allows for highly parallel computation through traditional

programming languages and techniques [16]. With the Phi coprocessor, a programmer has a higher

degree of flexibility of design of their programs. While in CUDA we are limited to stream processing,

with the Intel Phi we are allowed a larger amount of flexibility to decide on programming models.

In the Phi coprocessor there are far fewer cores than in a GPGPU. Compared to the 3072

cores in the current top-end consumer GPU, the top end Intel Phi has 61 cores [16]. These cores

also have fewer threads per core than in a GPU. Overall the total thread count would be much

lower on a Phi than on a GPU, thus reducing the degree of parallelism.

Nevertheless, each of the cores on a Phi are based on standard Intel processors in the

underlying design, inheriting several desired attributes. The processing cores of a Phi can execute

the same instruction set as a traditional x86 processors. This permits a programmer the capability

to write a program which runs on a CPU and is binary compatible with a Phi coprocessor.

Phi allows for parallelism through the SIMD style of computing architecture to enable for

stream processing capabilities. A programmer can write software targeting the Phi using stream

processing using OpenCL as well. Programming in OpenCL allows for a developer to have the
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capability of writing the same of programs for a GPGPU to run on a Phi, albeit with a much lower

level of parallelism.

An Intel Phi does have the benefit of being more flexible than GPGPUs. It is possible

for a developer to treat each core of a Phi as its own host in a cluster. This is due to how in a

Phi, each core can run a micro Linux operating system in an internal, high speed, network. As

such, the Phi opens opportunities to utilize standard methods of parallel computing on a single

device. An example is the message passing interface which allows for parallel computation through

a distributed computing platform [3].

Through utilizing an Intel Phi coprocessor we propose that we can build a more capable

policy enforcement mechanism than eGASP at its current state. The enforcement mechanism can

run in parallel to the target code running on the same coprocessor. This proposed enforcement

mechanism can be designed to be a dedicated execution monitor running as its own thread on the

Phi.

We believe that it can be possible for this parallel execution monitor to performing checks

on multiple, independent, processes running on the Phi. Furthermore, since each core of the Phi

operates with its own micro operating system, the cores have native support for file operations.

Native file operations will enable the policy designer with the capability of having a distributed

logging policy.

Finally, we know that the Phi can be programmed using standard C [16]. Also, we can

compile programs designed to target the Phi using the GCC compiler. Since we have the full

source code of GCC to work with, applying all of the features of eGASP as well as the features listed

in Chapter 5 is would be possible for the Phi.

6.2 Summary

General Purpose Graphics Processing Units are high performance processing devices. We

have identified existing and theoretical security attacks involving GPGPUS. Some of those attacks

have even utilized a GPGPU as an aid to hide their malicious executions.
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The field of aspect-oriented programming as a paradigm to increase software modularity

was presented. Aspect-oriented programming techniques were used to create our security policy

enforcement mechanism called eGASP. We have demonstrated some policies to not only enforce

security policies, but also to ease the development process of an engineer who would utilize CUDA.

The policies which we have demonstrated present a policy engineer with examples as how to write

logging behavior, execution limiting, and missing code completion.

Performance analysis was performed on CUDA code to justify design decisions of eGASP.

We have found that inserting code through inline, the method that eGASP uses to enforce policies,

is faster to execute than executing two separate CUDA functions. Also, we have found that our de-

cision of inlining policies caused no significant performance penalties, compared to placing function

calls to policy code.

We have presented a list of features that we wish to add on to eGASP. Through that feature

list we have argued for the necessity of an open-source compiler for CUDA. As we have demonstrated

throughout this thesis, it is enforcing security policies on a GPGPU was made possible through

aspect-oriented programming. It is anticipated that through the results of this work, we could

provide a long term goal for researching security policies and applying those security policies towards

parallel and distributed computing.
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